
How to Move
Object-Relational Mapping

into the Database
David Wheeler

Kineticode
OSCON 2005

1

Polymorphic
Database Design

David Wheeler
Kineticode

OSCON 2005

2

Executive summary

3

Executive summary

Look at simple object-oriented examples

3

Executive summary

Look at simple object-oriented examples

Examine typical database serialization approach

3

Executive summary

Look at simple object-oriented examples

Examine typical database serialization approach

Make the database do the work

3

Executive summary

Look at simple object-oriented examples

Examine typical database serialization approach

Make the database do the work

Let’s give it a try

3

Start with a class

4

Start with a class
CD::Album

title
artist
publisher
isbn

4

Start with a class

Simple UML is good UML

CD::Album

title
artist
publisher
isbn

4

Standard Approach

5

Standard Approach
Rules:

5

Standard Approach
Rules:

Class == Table

5

Standard Approach
Rules:

Class == Table

Object == Row

5

Standard Approach
Rules:

Class == Table

Object == Row

Attribute == Column

5

Standard Approach
Rules:

Class == Table

Object == Row

Attribute == Column

Methodology

5

Standard Approach
Rules:

Class == Table

Object == Row

Attribute == Column

Methodology

Create Table

5

Standard Approach
Rules:

Class == Table

Object == Row

Attribute == Column

Methodology

Create Table

Create SELECT query
5

Create a Table

6

Create a Table
CREATE TABLE album (
 id INTEGER NOT NULL PRIMARY KEY
 AUTOINCREMENT,
 title TEXT,
 artist TEXT,
 publisher TEXT,
 isbn TEXT
);

6

Not much to see here

Create a Table
CREATE TABLE album (
 id INTEGER NOT NULL PRIMARY KEY
 AUTOINCREMENT,
 title TEXT,
 artist TEXT,
 publisher TEXT,
 isbn TEXT
);

6

Not much to see here

Use primary keys!

Create a Table
CREATE TABLE album (
 id INTEGER NOT NULL PRIMARY KEY
 AUTOINCREMENT,
 title TEXT,
 artist TEXT,
 publisher TEXT,
 isbn TEXT
);

6

Write SELECT query

7

SELECT id, title, artist, publisher,
 isbn
FROM album;

Write SELECT query

7

SELECT id, title, artist, publisher,
 isbn
FROM album
WHERE id = ?;

Write SELECT query

7

Gee, that was easy

SELECT id, title, artist, publisher,
 isbn
FROM album
WHERE id = ?;

Write SELECT query

7

Gee, that was easy

Inflate objects from each row

SELECT id, title, artist, publisher,
 isbn
FROM album
WHERE id = ?;

Write SELECT query

7

Gee, that was easy

Inflate objects from each row

Let’s see if it works…

SELECT id, title, artist, publisher,
 isbn
FROM album
WHERE id = ?;

Write SELECT query

7

Examine the output
id title artist publisher isbn
---------- ------------------------ ------------------------- ---------- ----------
1 Rage Against the Machine Rage Against the Machine Atlantic 012848939
2 OK Computer Radiohead Atlantic 934293249
3 Elephant The White Stripes BMG 000864P55
4 Get Behind Me Satan The White Stripes BMG 949394595
5 Purple Rain Prince and the Revolution Warner Bro 638594823
6 Roots of a Revolution James Brown Polydor 496758395
7 Blood Sugar Sex Magik Red Hot Chili Peppers Warnter Br 957483845
8 Frizzle Fry Primus Atlantic 685968345

8

Examine the output

Hey cool!

id title artist publisher isbn
---------- ------------------------ ------------------------- ---------- ----------
1 Rage Against the Machine Rage Against the Machine Atlantic 012848939
2 OK Computer Radiohead Atlantic 934293249
3 Elephant The White Stripes BMG 000864P55
4 Get Behind Me Satan The White Stripes BMG 949394595
5 Purple Rain Prince and the Revolution Warner Bro 638594823
6 Roots of a Revolution James Brown Polydor 496758395
7 Blood Sugar Sex Magik Red Hot Chili Peppers Warnter Br 957483845
8 Frizzle Fry Primus Atlantic 685968345

8

Examine the output

Hey cool!

Single row == single object

id title artist publisher isbn
---------- ------------------------ ------------------------- ---------- ----------
1 Rage Against the Machine Rage Against the Machine Atlantic 012848939
2 OK Computer Radiohead Atlantic 934293249
3 Elephant The White Stripes BMG 000864P55
4 Get Behind Me Satan The White Stripes BMG 949394595
5 Purple Rain Prince and the Revolution Warner Bro 638594823
6 Roots of a Revolution James Brown Polydor 496758395
7 Blood Sugar Sex Magik Red Hot Chili Peppers Warnter Br 957483845
8 Frizzle Fry Primus Atlantic 685968345

8

Examine the output

Hey cool!

Single row == single object

Single column == single attribute

id title artist publisher isbn
---------- ------------------------ ------------------------- ---------- ----------
1 Rage Against the Machine Rage Against the Machine Atlantic 012848939
2 OK Computer Radiohead Atlantic 934293249
3 Elephant The White Stripes BMG 000864P55
4 Get Behind Me Satan The White Stripes BMG 949394595
5 Purple Rain Prince and the Revolution Warner Bro 638594823
6 Roots of a Revolution James Brown Polydor 496758395
7 Blood Sugar Sex Magik Red Hot Chili Peppers Warnter Br 957483845
8 Frizzle Fry Primus Atlantic 685968345

8

Let’s add a subclass
CD::Album

title
artist
publisher
isbn

9

Let’s add a subclass

CD::Music::Classical

composer
conductor
soloist
orchestra

CD::Album

title
artist
publisher
isbn

9

Let’s add a subclass

Piece of cake, right?

CD::Music::Classical

composer
conductor
soloist
orchestra

CD::Album

title
artist
publisher
isbn

9

Typical Subclassing Approach

10

Typical Subclassing Approach

Create another table

10

Typical Subclassing Approach

Create another table

Reference the parent class’ table

10

Typical Subclassing Approach

Create another table

Reference the parent class’ table

Write a two queries for each table

10

Typical Subclassing Approach

Create another table

Reference the parent class’ table

Write a two queries for each table

Write a JOIN query for both tables

10

Create the new table

11

Create the new table
CREATE TABLE classical (
 id INTEGER NOT NULL PRIMARY KEY
 AUTOINCREMENT,
 album_id INTEGER NOT NULL
 REFERENCES album(id),
 composer TEXT,
 conductor TEXT,
 orchestra TEXT
);

11

Create the new table

Hrm…not bad

CREATE TABLE classical (
 id INTEGER NOT NULL PRIMARY KEY
 AUTOINCREMENT,
 album_id INTEGER NOT NULL
 REFERENCES album(id),
 composer TEXT,
 conductor TEXT,
 orchestra TEXT
);

11

Create the new table

Hrm…not bad

You use foreign keys, right?

CREATE TABLE classical (
 id INTEGER NOT NULL PRIMARY KEY
 AUTOINCREMENT,
 album_id INTEGER NOT NULL
 REFERENCES album(id),
 composer TEXT,
 conductor TEXT,
 orchestra TEXT
);

11

Create the new table

Hrm…not bad

You use foreign keys, right?

What about the SELECT statement?

CREATE TABLE classical (
 id INTEGER NOT NULL PRIMARY KEY
 AUTOINCREMENT,
 album_id INTEGER NOT NULL
 REFERENCES album(id),
 composer TEXT,
 conductor TEXT,
 orchestra TEXT
);

11

Write SELECT query

12

Write SELECT query

SELECT m.id, title, artist, publisher,
 isbn, c.id composer, conductor,
 orchestra
FROM album m JOIN classical c
 ON m.id = c.album_id;

12

Write SELECT query

Also not too bad

SELECT m.id, title, artist, publisher,
 isbn, c.id composer, conductor,
 orchestra
FROM album m JOIN classical c
 ON m.id = c.album_id;

12

Write SELECT query

Also not too bad

Let’s see how it works…

SELECT m.id, title, artist, publisher,
 isbn, c.id composer, conductor,
 orchestra
FROM album m JOIN classical c
 ON m.id = c.album_id;

12

What’s wrong here?
id title id composer
---------- ------------------ ---------- ------------
9 Emperor Concerto 1 Beethoven
10 Eroica Symphony 2 Beethoven
11 Amadeus Soundtrack 3 Mozart

13

What’s wrong here?

Two IDs? That’s annoying

id title id composer
---------- ------------------ ---------- ------------
9 Emperor Concerto 1 Beethoven
10 Eroica Symphony 2 Beethoven
11 Amadeus Soundtrack 3 Mozart

13

What’s wrong here?

Two IDs? That’s annoying

Different ID for the same object

id title id composer
---------- ------------------ ---------- ------------
9 Emperor Concerto 1 Beethoven
10 Eroica Symphony 2 Beethoven
11 Amadeus Soundtrack 3 Mozart

13

What’s wrong here?

Two IDs? That’s annoying

Different ID for the same object

Which to use?

id title id composer
---------- ------------------ ---------- ------------
9 Emperor Concerto 1 Beethoven
10 Eroica Symphony 2 Beethoven
11 Amadeus Soundtrack 3 Mozart

13

What’s wrong here?

Two IDs? That’s annoying

Different ID for the same object

Which to use?

Stick to one and avoid the problem.

id title id composer
---------- ------------------ ---------- ------------
9 Emperor Concerto 1 Beethoven
10 Eroica Symphony 2 Beethoven
11 Amadeus Soundtrack 3 Mozart

13

Create the table again

14

Create the table again
CREATE TABLE classical (
 id INTEGER NOT NULL PRIMARY KEY
 REFERENCES album (id),
 composer TEXT,
 conductor TEXT,
 orchestra TEXT
);

14

Create the table again

Gee, that’s simpler

CREATE TABLE classical (
 id INTEGER NOT NULL PRIMARY KEY
 REFERENCES album (id),
 composer TEXT,
 conductor TEXT,
 orchestra TEXT
);

14

Create the table again

Gee, that’s simpler

The primary key is also a foreign key

CREATE TABLE classical (
 id INTEGER NOT NULL PRIMARY KEY
 REFERENCES album (id),
 composer TEXT,
 conductor TEXT,
 orchestra TEXT
);

14

Create the table again

Gee, that’s simpler

The primary key is also a foreign key

You still use the foreign key constraint, right?

CREATE TABLE classical (
 id INTEGER NOT NULL PRIMARY KEY
 REFERENCES album (id),
 composer TEXT,
 conductor TEXT,
 orchestra TEXT
);

14

Write SELECT query again

15

Write SELECT query again
SELECT m.id AS id, title, artist,
 publisher, isbn, composer,
 conductor, orchestra
FROM album m JOIN classical c
 ON m.id = c.id;

15

Write SELECT query again

That got a bit simpler, too

SELECT m.id AS id, title, artist,
 publisher, isbn, composer,
 conductor, orchestra
FROM album m JOIN classical c
 ON m.id = c.id;

15

Write SELECT query again

That got a bit simpler, too

Disambiguate the ID column

SELECT m.id AS id, title, artist,
 publisher, isbn, composer,
 conductor, orchestra
FROM album m JOIN classical c
 ON m.id = c.id;

15

Write SELECT query again

That got a bit simpler, too

Disambiguate the ID column

Let’s see if it works…

SELECT m.id AS id, title, artist,
 publisher, isbn, composer,
 conductor, orchestra
FROM album m JOIN classical c
 ON m.id = c.id;

15

Now we’re talkin’!
id title composer conductor
---------- ------------------ ------------ ----------
9 Emperor Concerto Beethoven Ozawa
10 Eroica Symphony Beethoven Bernstein
11 Amadeus Soundtrack Mozart Neville Ma

16

Now we’re talkin’!

Just one ID

id title composer conductor
---------- ------------------ ------------ ----------
9 Emperor Concerto Beethoven Ozawa
10 Eroica Symphony Beethoven Bernstein
11 Amadeus Soundtrack Mozart Neville Ma

16

Now we’re talkin’!

Just one ID

But why must we write a JOIN query?

id title composer conductor
---------- ------------------ ------------ ----------
9 Emperor Concerto Beethoven Ozawa
10 Eroica Symphony Beethoven Bernstein
11 Amadeus Soundtrack Mozart Neville Ma

16

Now we’re talkin’!

Just one ID

But why must we write a JOIN query?

Couldn’t it be even simpler?

id title composer conductor
---------- ------------------ ------------ ----------
9 Emperor Concerto Beethoven Ozawa
10 Eroica Symphony Beethoven Bernstein
11 Amadeus Soundtrack Mozart Neville Ma

16

Now we’re talkin’!

Just one ID

But why must we write a JOIN query?

Couldn’t it be even simpler?

Can’t we truly have one class == one table?

id title composer conductor
---------- ------------------ ------------ ----------
9 Emperor Concerto Beethoven Ozawa
10 Eroica Symphony Beethoven Bernstein
11 Amadeus Soundtrack Mozart Neville Ma

16

Yes, it can!

SELECT m.id AS id, title, artist,
 publisher, isbn, composer,
 conductor, orchestra
FROM album m JOIN classical c
 ON m.id = c.id;

17

Yes, it can!
CREATE VIEW classical AS
SELECT m.id AS id, title, artist,
 publisher, isbn, composer,
 conductor, orchestra
FROM album m JOIN album_classical c
 ON m.id = c.id;

17

Yes, it can!

Now we have a single “table”

CREATE VIEW classical AS
SELECT m.id AS id, title, artist,
 publisher, isbn, composer,
 conductor, orchestra
FROM album m JOIN album_classical c
 ON m.id = c.id;

17

Yes, it can!

Now we have a single “table”

Rename subclass table to represent inheritance

CREATE VIEW classical AS
SELECT m.id AS id, title, artist,
 publisher, isbn, composer,
 conductor, orchestra
FROM album m JOIN album_classical c
 ON m.id = c.id;

17

Yes, it can!

Now we have a single “table”

Rename subclass table to represent inheritance

Supported by PostgreSQL, SQLite, and MySQL

CREATE VIEW classical AS
SELECT m.id AS id, title, artist,
 publisher, isbn, composer,
 conductor, orchestra
FROM album m JOIN album_classical c
 ON m.id = c.id;

17

Query the VIEW

18

Query the VIEW
SELECT id, title, artist, publisher,
 isbn, composer, conductor,
 orchestra
FROM classical;

18

Query the VIEW

Also a bit simpler

SELECT id, title, artist, publisher,
 isbn, composer, conductor,
 orchestra
FROM classical;

18

Query the VIEW

Also a bit simpler

The database handles inheritance transparently

SELECT id, title, artist, publisher,
 isbn, composer, conductor,
 orchestra
FROM classical;

18

Query the VIEW

Also a bit simpler

The database handles inheritance transparently

The VIEW is compiled, thus faster

SELECT id, title, artist, publisher,
 isbn, composer, conductor,
 orchestra
FROM classical;

18

Query the VIEW

Also a bit simpler

The database handles inheritance transparently

The VIEW is compiled, thus faster

Let’s see if it works…

SELECT id, title, artist, publisher,
 isbn, composer, conductor,
 orchestra
FROM classical;

18

Get the same output
id title composer conductor
---------- ------------------ ------------ ----------
9 Emperor Concerto Beethoven Ozawa
10 Eroica Symphony Beethoven Bernstein
11 Amadeus Soundtrack Mozart Neville Ma

19

Get the same output

Hey, awesome!

id title composer conductor
---------- ------------------ ------------ ----------
9 Emperor Concerto Beethoven Ozawa
10 Eroica Symphony Beethoven Bernstein
11 Amadeus Soundtrack Mozart Neville Ma

19

Get the same output

Hey, awesome!

Returns the same records as before

id title composer conductor
---------- ------------------ ------------ ----------
9 Emperor Concerto Beethoven Ozawa
10 Eroica Symphony Beethoven Bernstein
11 Amadeus Soundtrack Mozart Neville Ma

19

Get the same output

Hey, awesome!

Returns the same records as before

It’s faster, too

id title composer conductor
---------- ------------------ ------------ ----------
9 Emperor Concerto Beethoven Ozawa
10 Eroica Symphony Beethoven Bernstein
11 Amadeus Soundtrack Mozart Neville Ma

19

Get the same output

Hey, awesome!

Returns the same records as before

It’s faster, too

But what about INSERTs, UPDATEs, and DELETEs?

id title composer conductor
---------- ------------------ ------------ ----------
9 Emperor Concerto Beethoven Ozawa
10 Eroica Symphony Beethoven Bernstein
11 Amadeus Soundtrack Mozart Neville Ma

19

Back to the base class

20

Back to the base class
INSERT INTO album (title, artist, publisher, isbn)
VALUES ('Kid B', 'Radiohed', 'Polygramm', '0000');

20

Back to the base class
INSERT INTO album (title, artist, publisher, isbn)
VALUES ('Kid B', 'Radiohed', 'Polygramm', '0000');

UPDATE album
SET title = 'Kid A',
 artist = 'Radiohead',
 publisher = 'Polygram',
 isbn = '4959'
WHERE id = 12;

20

Back to the base class
INSERT INTO album (title, artist, publisher, isbn)
VALUES ('Kid B', 'Radiohed', 'Polygramm', '0000');

UPDATE album
SET title = 'Kid A',
 artist = 'Radiohead',
 publisher = 'Polygram',
 isbn = '4959'
WHERE id = 12;

DELETE FROM album
WHERE id = 12;

20

Back to the base class

Seems pretty straight-forward

INSERT INTO album (title, artist, publisher, isbn)
VALUES ('Kid B', 'Radiohed', 'Polygramm', '0000');

UPDATE album
SET title = 'Kid A',
 artist = 'Radiohead',
 publisher = 'Polygram',
 isbn = '4959'
WHERE id = 12;

DELETE FROM album
WHERE id = 12;

20

Back to the base class

Seems pretty straight-forward

Let’s try it…

INSERT INTO album (title, artist, publisher, isbn)
VALUES ('Kid B', 'Radiohed', 'Polygramm', '0000');

UPDATE album
SET title = 'Kid A',
 artist = 'Radiohead',
 publisher = 'Polygram',
 isbn = '4959'
WHERE id = 12;

DELETE FROM album
WHERE id = 12;

20

And now the subclass

21

And now the subclass
INSERT INTO classical (title, artist, publisher, isbn,
 composer, conductor, orchestra)
VALUES ('Cinema Serenad', 'Itzack Perlman', 'BMC', '2323',
 'Verious', 'Jon Williams', 'Pittsburg Symphony');

21

And now the subclass
INSERT INTO classical (title, artist, publisher, isbn,
 composer, conductor, orchestra)
VALUES ('Cinema Serenad', 'Itzack Perlman', 'BMC', '2323',
 'Verious', 'Jon Williams', 'Pittsburg Symphony');

UPDATE classical
SET title = 'Cinema Serenade',
 artist = 'Itzak Perlman',
 publisher = 'BMG',
 isbn = '2764',
 composer = 'Various',
 conductor = 'John Williams',
 orchestra = 'Pittsburgh Symphony'
WHERE id = 13;

21

And now the subclass
INSERT INTO classical (title, artist, publisher, isbn,
 composer, conductor, orchestra)
VALUES ('Cinema Serenad', 'Itzack Perlman', 'BMC', '2323',
 'Verious', 'Jon Williams', 'Pittsburg Symphony');

UPDATE classical
SET title = 'Cinema Serenade',
 artist = 'Itzak Perlman',
 publisher = 'BMG',
 isbn = '2764',
 composer = 'Various',
 conductor = 'John Williams',
 orchestra = 'Pittsburgh Symphony'
WHERE id = 13;

DELETE FROM classical
WHERE id = 13;

21

And now the subclass

Let’s see if these work…

INSERT INTO classical (title, artist, publisher, isbn,
 composer, conductor, orchestra)
VALUES ('Cinema Serenad', 'Itzack Perlman', 'BMC', '2323',
 'Verious', 'Jon Williams', 'Pittsburg Symphony');

UPDATE classical
SET title = 'Cinema Serenade',
 artist = 'Itzak Perlman',
 publisher = 'BMG',
 isbn = '2764',
 composer = 'Various',
 conductor = 'John Williams',
 orchestra = 'Pittsburgh Symphony'
WHERE id = 13;

DELETE FROM classical
WHERE id = 13;

21

D’oh! What now?

INSERT INTO classical (title, artist, publisher, isbn,
 composer, conductor, orchestra)
VALUES ('Cinema Serenad', 'Itzack Perlman', 'BMC', '2323',
 'Verious', 'Jon Williams', 'Pittsburg Symphony');

SQL error: cannot modify classical because it is a view

22

D’oh! What now?

VIEWs are not updatable

INSERT INTO classical (title, artist, publisher, isbn,
 composer, conductor, orchestra)
VALUES ('Cinema Serenad', 'Itzack Perlman', 'BMC', '2323',
 'Verious', 'Jon Williams', 'Pittsburg Symphony');

SQL error: cannot modify classical because it is a view

22

D’oh! What now?

VIEWs are not updatable

Must modify the two tables separately

INSERT INTO classical (title, artist, publisher, isbn,
 composer, conductor, orchestra)
VALUES ('Cinema Serenad', 'Itzack Perlman', 'BMC', '2323',
 'Verious', 'Jon Williams', 'Pittsburg Symphony');

SQL error: cannot modify classical because it is a view

22

INSERT classical object

23

INSERT classical object
INSERT INTO album (title, artist, publisher, isbn)
VALUES ('Cinema Serenad', 'Itzack Perlman', 'BMC', '2323');

INSERT INTO album_classical
 (id, composer, conductor, orchestra)
VALUES (last_insert_rowid(), 'Verious', 'Jon Williams',
 'Pittsburg Symphony');

23

INSERT classical object

We have to modify the two table separately

INSERT INTO album (title, artist, publisher, isbn)
VALUES ('Cinema Serenad', 'Itzack Perlman', 'BMC', '2323');

INSERT INTO album_classical
 (id, composer, conductor, orchestra)
VALUES (last_insert_rowid(), 'Verious', 'Jon Williams',
 'Pittsburg Symphony');

23

INSERT classical object

We have to modify the two table separately

Use function to populate subclass ID

INSERT INTO album (title, artist, publisher, isbn)
VALUES ('Cinema Serenad', 'Itzack Perlman', 'BMC', '2323');

INSERT INTO album_classical
 (id, composer, conductor, orchestra)
VALUES (last_insert_rowid(), 'Verious', 'Jon Williams',
 'Pittsburg Symphony');

23

INSERT classical object

We have to modify the two table separately

Use function to populate subclass ID

SQLite: last_insert_rowid()

INSERT INTO album (title, artist, publisher, isbn)
VALUES ('Cinema Serenad', 'Itzack Perlman', 'BMC', '2323');

INSERT INTO album_classical
 (id, composer, conductor, orchestra)
VALUES (last_insert_rowid(), 'Verious', 'Jon Williams',
 'Pittsburg Symphony');

23

INSERT classical object

We have to modify the two table separately

Use function to populate subclass ID

SQLite: last_insert_rowid()

MySQL: last_insert_id()

INSERT INTO album (title, artist, publisher, isbn)
VALUES ('Cinema Serenad', 'Itzack Perlman', 'BMC', '2323');

INSERT INTO album_classical
 (id, composer, conductor, orchestra)
VALUES (last_insert_rowid(), 'Verious', 'Jon Williams',
 'Pittsburg Symphony');

23

INSERT classical object

We have to modify the two table separately

Use function to populate subclass ID

SQLite: last_insert_rowid()

MySQL: last_insert_id()

PostgreSQL: CURRVAL('album_id_seq');

INSERT INTO album (title, artist, publisher, isbn)
VALUES ('Cinema Serenad', 'Itzack Perlman', 'BMC', '2323');

INSERT INTO album_classical
 (id, composer, conductor, orchestra)
VALUES (last_insert_rowid(), 'Verious', 'Jon Williams',
 'Pittsburg Symphony');

23

UPDATE classical object

24

UPDATE classical object
UPDATE album
SET title = 'Cinema Serenade',
 artist = 'Itzak Perlman',
 publisher = 'BMG',
 isbn = '2764'
WHERE id = 13;

UPDATE album_classical
SET composer = 'Various',
 conductor = 'John Williams',
 orchestra = 'Pittsburgh Symphony'
WHERE id = 13;

24

UPDATE classical object

Again, modify the two table separately

UPDATE album
SET title = 'Cinema Serenade',
 artist = 'Itzak Perlman',
 publisher = 'BMG',
 isbn = '2764'
WHERE id = 13;

UPDATE album_classical
SET composer = 'Various',
 conductor = 'John Williams',
 orchestra = 'Pittsburgh Symphony'
WHERE id = 13;

24

DELETE classical object

25

DELETE classical object
DELETE FROM album_classical
WHERE id = 13;

DELETE FROM album
WHERE id = 13;

25

DELETE classical object

And again, modify the two table separately

DELETE FROM album_classical
WHERE id = 13;

DELETE FROM album
WHERE id = 13;

25

DELETE classical object

And again, modify the two table separately

Unless your foreign key is ON DELETE CASCADE

DELETE FROM album_classical
WHERE id = 13;

DELETE FROM album
WHERE id = 13;

25

DELETE classical object

And again, modify the two table separately

Unless your foreign key is ON DELETE CASCADE

Let’s see how these queries work…

DELETE FROM album_classical
WHERE id = 13;

DELETE FROM album
WHERE id = 13;

25

Is there no other way?

26

Is there no other way?

The more complex your relations, the more queries

26

Is there no other way?

The more complex your relations, the more queries

All because you can’t update VIEWs

26

Is there no other way?

The more complex your relations, the more queries

All because you can’t update VIEWs

Or can you?

26

Updatable views

27

Updatable views
SQLite supports triggers on VIEWs

27

Updatable views
SQLite supports triggers on VIEWs

PostgreSQL supports rules on VIEWs

27

Updatable views
SQLite supports triggers on VIEWs

PostgreSQL supports rules on VIEWs

With work, you can INSERT, UPDATE, and DELETE on VIEWs

27

SQLite INSERT trigger

28

SQLite INSERT trigger
CREATE TRIGGER insert_classical
INSTEAD OF INSERT ON classical
FOR EACH ROW BEGIN
 INSERT INTO album (title, artist, publisher, isbn)
 VALUES (NEW.title, NEW.artist, NEW.publisher, NEW.isbn);

 INSERT INTO album_classical
 (id, composer, conductor, orchestra)
 VALUES (last_insert_rowid(), NEW.composer, NEW.conductor,
 NEW.orchestra);
END;

28

SQLite INSERT trigger

Use NEW variable to populate values

CREATE TRIGGER insert_classical
INSTEAD OF INSERT ON classical
FOR EACH ROW BEGIN
 INSERT INTO album (title, artist, publisher, isbn)
 VALUES (NEW.title, NEW.artist, NEW.publisher, NEW.isbn);

 INSERT INTO album_classical
 (id, composer, conductor, orchestra)
 VALUES (last_insert_rowid(), NEW.composer, NEW.conductor,
 NEW.orchestra);
END;

28

SQLite INSERT trigger

Use NEW variable to populate values

Use last_insert_rowid() for classical ID

CREATE TRIGGER insert_classical
INSTEAD OF INSERT ON classical
FOR EACH ROW BEGIN
 INSERT INTO album (title, artist, publisher, isbn)
 VALUES (NEW.title, NEW.artist, NEW.publisher, NEW.isbn);

 INSERT INTO album_classical
 (id, composer, conductor, orchestra)
 VALUES (last_insert_rowid(), NEW.composer, NEW.conductor,
 NEW.orchestra);
END;

28

PostgreSQL INSERT rule

29

PostgreSQL INSERT rule
CREATE RULE insert_classical AS
ON INSERT TO classical DO INSTEAD (
 INSERT INTO album (title, artist, publisher, isbn)
 VALUES (NEW.title, NEW.artist, NEW.publisher, NEW.isbn);

 INSERT INTO album_classical
 (id, composer, conductor, orchestra)
 VALUES (CURRVAL('seq_album_id_seq'), NEW.composer,
 NEW.conductor, NEW.orchestra);
);

29

PostgreSQL INSERT rule

Use NEW variable to populate values

CREATE RULE insert_classical AS
ON INSERT TO classical DO INSTEAD (
 INSERT INTO album (title, artist, publisher, isbn)
 VALUES (NEW.title, NEW.artist, NEW.publisher, NEW.isbn);

 INSERT INTO album_classical
 (id, composer, conductor, orchestra)
 VALUES (CURRVAL('seq_album_id_seq'), NEW.composer,
 NEW.conductor, NEW.orchestra);
);

29

PostgreSQL INSERT rule

Use NEW variable to populate values

Use CURRVAL() to populate classical ID

CREATE RULE insert_classical AS
ON INSERT TO classical DO INSTEAD (
 INSERT INTO album (title, artist, publisher, isbn)
 VALUES (NEW.title, NEW.artist, NEW.publisher, NEW.isbn);

 INSERT INTO album_classical
 (id, composer, conductor, orchestra)
 VALUES (CURRVAL('seq_album_id_seq'), NEW.composer,
 NEW.conductor, NEW.orchestra);
);

29

SQLite UPDATE trigger

30

SQLite UPDATE trigger
CREATE TRIGGER update_classical
INSTEAD OF UPDATE ON classical
FOR EACH ROW BEGIN
 UPDATE album
 SET title = NEW.title,
 artist = NEW.artist,
 publisher = NEW.publisher,
 isbn = NEW.isbn
 WHERE id = OLD.id;

 UPDATE album_classical
 SET composer = NEW.composer,
 conductor = NEW.conductor,
 orchestra = NEW.orchestra
 WHERE id = OLD.id;
END;

30

SQLite UPDATE trigger

Use OLD.id variable to reference existing rows

CREATE TRIGGER update_classical
INSTEAD OF UPDATE ON classical
FOR EACH ROW BEGIN
 UPDATE album
 SET title = NEW.title,
 artist = NEW.artist,
 publisher = NEW.publisher,
 isbn = NEW.isbn
 WHERE id = OLD.id;

 UPDATE album_classical
 SET composer = NEW.composer,
 conductor = NEW.conductor,
 orchestra = NEW.orchestra
 WHERE id = OLD.id;
END;

30

PostgreSQL UPDATE rule

31

PostgreSQL UPDATE rule
CREATE RULE update_classical AS
ON UPDATE TO classical DO INSTEAD (
 UPDATE album
 SET title = NEW.title,
 artist = NEW.artist,
 publisher = NEW.publisher,
 isbn = NEW.isbn
 WHERE id = OLD.id;

 UPDATE album_classical
 SET composer = NEW.composer,
 conductor = NEW.conductor,
 orchestra = NEW.orchestra
 WHERE id = OLD.id;
);

31

PostgreSQL UPDATE rule

Use OLD.id variable to reference existing rows

CREATE RULE update_classical AS
ON UPDATE TO classical DO INSTEAD (
 UPDATE album
 SET title = NEW.title,
 artist = NEW.artist,
 publisher = NEW.publisher,
 isbn = NEW.isbn
 WHERE id = OLD.id;

 UPDATE album_classical
 SET composer = NEW.composer,
 conductor = NEW.conductor,
 orchestra = NEW.orchestra
 WHERE id = OLD.id;
);

31

SQLite DELETE trigger

32

SQLite DELETE trigger

CREATE TRIGGER delete_classical
INSTEAD OF DELETE ON classical
FOR EACH ROW BEGIN
 DELETE FROM album_classical
 WHERE id = OLD.id;

 DELETE FROM album
 WHERE id = OLD.id;
END;

32

SQLite DELETE trigger

Use OLD.id to delete the proper row

CREATE TRIGGER delete_classical
INSTEAD OF DELETE ON classical
FOR EACH ROW BEGIN
 DELETE FROM album_classical
 WHERE id = OLD.id;

 DELETE FROM album
 WHERE id = OLD.id;
END;

32

PostgreSQL DELETE rule

33

PostgreSQL DELETE rule

CREATE RULE delete_classical AS
ON DELETE TO classical DO INSTEAD (
 DELETE FROM album_classical
 WHERE id = OLD.id;

 DELETE FROM album
 WHERE id = OLD.id;
);

33

PostgreSQL DELETE rule

Use OLD.id to delete the proper row

CREATE RULE delete_classical AS
ON DELETE TO classical DO INSTEAD (
 DELETE FROM album_classical
 WHERE id = OLD.id;

 DELETE FROM album
 WHERE id = OLD.id;
);

33

PostgreSQL DELETE rule

Use OLD.id to delete the proper row

Let’s see how they work…

CREATE RULE delete_classical AS
ON DELETE TO classical DO INSTEAD (
 DELETE FROM album_classical
 WHERE id = OLD.id;

 DELETE FROM album
 WHERE id = OLD.id;
);

33

Trigger/Rule Advantages

34

Trigger/Rule Advantages

Queries are pre-compiled

34

Trigger/Rule Advantages

Queries are pre-compiled

Much simpler client-side code

34

Trigger/Rule Advantages

Queries are pre-compiled

Much simpler client-side code

Fewer queries sent to the database

34

Trigger/Rule Advantages

Queries are pre-compiled

Much simpler client-side code

Fewer queries sent to the database

Reduced network overhead

34

Trigger/Rule Advantages

Queries are pre-compiled

Much simpler client-side code

Fewer queries sent to the database

Reduced network overhead

Maintains normalization

34

One-to-many relationships

35

One-to-many relationships
Often have one-to-many relationships

35

One-to-many relationships
Often have one-to-many relationships

Let’s we add track objects

35

One-to-many relationships
Often have one-to-many relationships

Let’s we add track objects

Each refers to a single album object

35

One-to-many relationships
Often have one-to-many relationships

Let’s we add track objects

Each refers to a single album object

Often need to know album information for the track

35

One-to-many relationships
Often have one-to-many relationships

Let’s we add track objects

Each refers to a single album object

Often need to know album information for the track

Generally requires two queries, one for each object

35

One-to-many relationships
Often have one-to-many relationships

Let’s we add track objects

Each refers to a single album object

Often need to know album information for the track

Generally requires two queries, one for each object
SELECT id, title, numb, album_id
FROM track;

SELECT id, title, artist, publisher, isbn
FROM album
WHERE id = $album_id;

35

JOIN composite objects
SELECT track.id AS id, track.title AS title, numb,
 album.id AS album__id,
 album.title AS album__title,
 artist AS album__artist,
 publisher AS album__publisher,
 isbn AS album__isbn
FROM track JOIN album
 ON track.album_id = album.id;

36

JOIN composite objects

Or, do a JOIN, instead

SELECT track.id AS id, track.title AS title, numb,
 album.id AS album__id,
 album.title AS album__title,
 artist AS album__artist,
 publisher AS album__publisher,
 isbn AS album__isbn
FROM track JOIN album
 ON track.album_id = album.id;

36

JOIN composite objects

Or, do a JOIN, instead

Saves network overhead

SELECT track.id AS id, track.title AS title, numb,
 album.id AS album__id,
 album.title AS album__title,
 artist AS album__artist,
 publisher AS album__publisher,
 isbn AS album__isbn
FROM track JOIN album
 ON track.album_id = album.id;

36

JOIN composite objects

Or, do a JOIN, instead

Saves network overhead

But might as well make a view for it…

SELECT track.id AS id, track.title AS title, numb,
 album.id AS album__id,
 album.title AS album__title,
 artist AS album__artist,
 publisher AS album__publisher,
 isbn AS album__isbn
FROM track JOIN album
 ON track.album_id = album.id;

36

CREATE VIEW track AS
SELECT _track.id AS id, _track.title AS title, numb,
 album.id AS album__id,
 album.title AS album__title,
 artist AS album__artist,
 publisher AS album__publisher,
 isbn AS album__isbn
FROM _track JOIN album
 ON _track.album_id = album.id;

JOIN composite objects

Or, do a JOIN, instead

Saves network overhead

But might as well make a view for it…

36

What about MySQL?

37

What about MySQL?
MySQL 5 supports views

37

What about MySQL?
MySQL 5 supports views

Can INSERT, UPDATE, & DELETE on single table views

37

What about MySQL?
MySQL 5 supports views

Can INSERT, UPDATE, & DELETE on single table views

Cannot on multi-table (JOIN) views

37

What about MySQL?
MySQL 5 supports views

Can INSERT, UPDATE, & DELETE on single table views

Cannot on multi-table (JOIN) views

MySQL supports triggers

37

What about MySQL?
MySQL 5 supports views

Can INSERT, UPDATE, & DELETE on single table views

Cannot on multi-table (JOIN) views

MySQL supports triggers

Cannot assign triggers to views

37

What about MySQL?
MySQL 5 supports views

Can INSERT, UPDATE, & DELETE on single table views

Cannot on multi-table (JOIN) views

MySQL supports triggers

Cannot assign triggers to views

No rules

37

Resources

38

Resources

“PostgreSQL: Introduction and Concepts” by Bruce Momjian
http://xrl.us/gy3a

38

Resources

“PostgreSQL: Introduction and Concepts” by Bruce Momjian
http://xrl.us/gy3a

SQLite: http://www.sqlite.org/

38

Resources

“PostgreSQL: Introduction and Concepts” by Bruce Momjian
http://xrl.us/gy3a

SQLite: http://www.sqlite.org/

MySQL: http://dev.mysql.com/doc/mysql/en/views.html

38

Thank you
David Wheeler

Kineticode
OSCON 2005

david@kineticode.com

39

